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ON A SECANT DIRICHLET SERIES AND EICHLER

INTEGRALS OF EISENSTEIN SERIES

BRUCE C. BERNDT AND ARMIN STRAUB

Abstract. We consider, for even s, the secant Dirichlet series ψs(τ) =
∑

∞

n=1
sec(πnτ)

ns ,
recently introduced and studied by Laĺın, Rodrigue and Rogers. In particular,
we show, as conjectured and partially proven by Laĺın, Rodrigue and Rogers,
that the values ψ2m(

√

r), with r > 0 rational, are rational multiples of π2m.
We then put the properties of the secant Dirichlet series into context by show-
ing that they are Eichler integrals of odd weight Eisenstein series of level 4.
This leads us to consider Eichler integrals of general Eisenstein series and to
determine their period polynomials. In the level 1 case, these polynomials were
recently shown by Murty, Smyth and Wang to have most of their roots on the
unit circle. We provide evidence that this phenomenon extends to the higher

level case. This observation complements recent results by Conrey, Farmer
and Imamoglu as well as El-Guindy and Raji on zeros of period polynomials
of Hecke eigenforms in the level 1 case. Finally, we briefly revisit results of a
similar type in the works of Ramanujan.

1. Introduction

Our considerations begin with the secant Dirichlet series

(1) ψs(τ) =
∞
∑

n=1

sec(πnτ)

ns
,

which were recently introduced and studied by Laĺın, Rodrigue and Rogers [LRR14].
One of the motivations for considering these sums is their similarity in shape and,
as we will see, in properties to the cotangent Dirichlet series

(2) ξs(τ) =
∞
∑

n=1

cot(πnτ)

ns
.

For instance, as first proved by Lerch and also recorded by Ramanujan (see Section
8 as well as [Ber77] or [Ber89, p. 276]) the difference τ2mξ2m+1(−1/τ)− ξ2m+1(τ)
is a rational function in τ . This modular functional equation and its ramifica-
tions continue to inspire research to this date, including, for instance, [GMR11],
[MSW11], [Riv12], [LS13].

As shown in [LRR14], the secant Dirichlet series ψ2m(τ) satisfy modular func-
tional equations as well. In Section 2, we give an alternative derivation of these
functional equations based on the residue theorem and in the spirit of [Ber76]. In
this way, we obtain a compact representation of the associated rational function as
a certain Taylor coefficient of a quotient of trigonometric functions. We then show
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2 BRUCE C. BERNDT AND ARMIN STRAUB

in Section 3, as conjectured and partially proven in [LRR14], that, for a positive
rational number r, ψ2m(

√
r) is a rational multiple of π2m.

In Section 4, we observe that the 2mth derivative of ψ2m(2τ) is, up to a constant
term, an Eisenstein series of weight 2m + 1, level 4 and character χ−4. In other
words, the secant Dirichlet series ψ2m are Eichler integrals of Eisenstein series; the
basic theory of Eichler integrals is reviewed in Section 5. In this light, several of
the properties of the function ψ2m become natural and, in Section 6, we use the
modular setting to give another derivation of the functional equation by evaluating
the period polynomial of the corresponding Eisenstein series.

In fact, the computation of the period polynomials in Section 6 is carried out
more generally for Eisenstein series corresponding to pairs of Dirichlet characters. A
special case of this computation allows us, for instance, to rederive the Ramanujan-
style formulas for Dirichlet L-values of [Kat74]. The resulting period polynomials
mirror the well-known polynomials occuring in the level 1 case, studied, for in-
stance, in [GMR11] and [MSW11], where they (more accurately, their odd parts)
are referred to as the Ramanujan polynomials . In [MSW11] it was shown that the
Ramanujan polynomials are nearly unimodular, that is, all their nonreal roots lie
on the unit circle. On the other hand, it was conjectured in [LR13], and proven
in [LS13], that the full period polynomial is unimodular in the level 1 case, and
this property is also shown to hold for several related polynomials. We indicate in
Section 7 that, after a linear change of variables, the period polynomials in higher
level appear to have all or most of their roots on the unit circle as well. This ob-
servation fits well with and complements the recent result of [CFI12] and [EGR13],
where it is shown that the nontrivial zeros of period polynomials of modular forms,
which are Hecke eigenforms of level 1, all lie on the unit circle. As an application,
we derive formulas for Dirichlet L-values in terms of values of an Eichler integral
at algebraic arguments of modulus 1, thus generalizing the formulas for ζ(2k + 1)
studied in [GMR11].

Finally, in Section 8, we return to and discuss related entries in Ramanujan’s
notebook [Ber89], including the particularly famous entry corresponding to the
cotangent Dirichlet series (2), which, for odd s, are the Eichler integrals of the
Eisenstein series for the full modular group. In particular, we close by demonstrat-
ing that the functional equation for ψ2m(τ) is in fact a consequence of an identity
stated by Ramanujan.

It is on purpose, and hopefully to the benefit of some readers, that the consid-
erations in this paper start out entirely explicit and elementary, with theoretical
background, such as Eisenstein series of higher level and Eichler integrals, being
included as we proceed. As a consequence of this approach, some of the earlier
results can be obtained as special cases of later results.

Convergence of series such as (1) and (2), when τ is a real number, is a rather
subtle issue; see, for instance, [Riv12]. It is shown in [LRR14] that ψs(τ), for s > 2,
converges absolutely for rational τ with odd denominator as well as for algebraic
irrational τ . On the other hand, the series converges absolutely for all nonreal τ ,
and our discussion of the modular properties proceeds under the tacit assumption
that τ is not real. In the case of evaluations of ψ2m(τ) at real quadratic τ in Section
3, one may then use limiting arguments to show that the functional equations also
hold for these arguments.
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2. The functional equation of the secant Dirichlet series via

residues

Obviously, ψs(τ) is periodic of period 2, that is ψs(τ+2) = ψs(τ). In this section,
we present an alternative proof of the additional nontrivial functional equation
satisfied by (1) in the case s = 2m. In [LRR14] this functional equation was
established by skillfully and carefully convoluting partial fraction expansions. The
proof given here is based on the residue theorem and is in the spirit of the proof
given in [Ber76] for the cotangent Dirichlet series (2). Throughout, we denote with
[zn]f(z) the nth coefficient of the Taylor expansion of f(z).

Theorem 2.1. Let m > 0 be an integer. Then we have

(1 + τ)2m−1 ψ2m

(

τ

1 + τ

)

− (1− τ)2m−1 ψ2m

(

τ

1− τ

)

= π2m
[

z2m−1
] sin(τz)

sin((1− τ) z) sin((1 + τ) z)
.(3)

Proof. Let s > 0 be an integer and consider

(4) IN =
1

2πi

∫

CN

sin
(

π b−a2 z
)

sin(πaz) sin(πbz)

dz

zs+1
,

where CN is a positively oriented circle of radius RN centered at the origin. As in
[Ber76], the radii RN are chosen such that the points on the circle are always at
least some fixed positive distance from any of the points n

a and n
b , where n ranges

over the integers. It is then easily seen that

(5) lim
N→∞

IN = 0.

The integrand of (4) has poles at z = 0 as well as at z = n
a and z = n

b for n ∈ Z.
Writing Res(α) for the residue of the integrand at z = α, we have

Res
(n

a

)

= as
(−1)n

π

1

ns+1

sin
(

πn b−a2a

)

sin
(

πn ba
) =

as

2π

sec
(

πn b−a2a

)

ns+1
,

where the last equality is obtained by writing (−1)n = 1
cos(πn) and using the trigono-

metric identity

cos(x) sin(y)− cos(y) sin(x) = 2 cos

(

y − x

2

)

sin

(

y − x

2

)

,

with x = πn and y = πn ba . By symmetry,

Res
(n

b

)

= − bs

2π

sec
(

πn b−a2b

)

ns+1
.

For the residue at the origin, we find that

Res(0) = [zs]
sin
(

π b−a2 z
)

sin(πaz) sin(πbz)
= πs [zs]

sin
(

b−a
2 z
)

sin(az) sin(bz)
=: πsps(a, b).

We now assume that s is odd. Collecting residues and letting N → ∞, we obtain,
using (5),

0 =
as

π

∞
∑

n=1

sec
(

πn b−a2a

)

ns+1
− bs

π

∞
∑

n=1

sec
(

πn b−a2b

)

ns+1
+ πsps(a, b).
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Finally, let a = 1− τ and b = 1+ τ , and write s = 2m− 1, to obtain the functional
equation in the form

(1 + τ)2m−1ψ2m

(

τ

1 + τ

)

− (1− τ)2m−1ψ2m

(

τ

1− τ

)

= π2mp2m−1(1 − τ, 1 + τ),

as claimed. �

Note that, upon replacing τ → τ
τ+1 and simplifying slightly, we find that equation

(3) becomes

(6) (2τ + 1)2m−1ψ2m

(

τ

2τ + 1

)

− ψ2m(τ) = π2m
[

z2m−1
] sin(τz)

sin(z) sin((2τ + 1)z)
,

which, while less symmetric, makes the modular transformation property more
apparent.

Remark 2.2. The rational functions on the right-hand sides of (3) and (6) can be
made more explicit by expanding the sine functions. Namely, if we expand the two
sine functions in the denominator using the defining generating function,

(7)
zexz

ez − 1
=
∑

n>0

Bn(x)
zn

n!
,

of the Bernoulli polynomials Bn(x), then the rational functions are seen to be equal
to double sums such as

[

z2m−1
] sin

(

b−a
2 z
)

sin(az) sin(bz)
=

(−1)m

ab

∑

k+n+r=m

(

b−a
2

)2k+1
B2n(

1
2 )B2r(

1
2 )(2a)

2n(2b)2r

(2k + 1)!(2n)!(2r)!
,

where the sum is over nonnegative integers k, n, r summing to m. We remark that
Bn(

1
2 ) = −(1 − 21−n)Bn, where Bn = Bn(0) is the nth Bernoulli number. Note

that this shows, in particular, that the right-hand sides of equations (3) and (6)
are rational functions of the form π2mp2m(τ)/(1 − τ2) and π2mq2m(τ)/(2τ + 1),
respectively, where p2m and q2m are polynomials of degree 2m + 1 with rational
coefficients.

In fact, as we will see from versions of the functional equation derived later in
this paper, the mentioned double sums can be reduced to single summations; see
Remark 6.7.

3. The secant Dirichlet series at real quadratic irrationals

In [LRR14] it was conjectured and partially proven that ψ2m(
√
k) is a rational

multiple of π2m whenever m and k are positive integers. In this section, we prove
this assertion and extend it to the case when k is a rational number. For the sake
of simplicity, we first prove, in Theorem 3.2, the case of integral k and then briefly
indicate how the more general case, stated in Theorem 3.4, follows in essentially
the same way. We point out that an independent proof, based on the theory
of generalized η-functions, of Theorem 3.4 has been given by P. Charollois and
M. Greenberg [CG14]. We thank M. Laĺın, who received preprints of both [CG14]
and this paper within a couple of days, for making us aware of this reference.

Consider the matrices

(8) A =

(

1 2
0 1

)

, B =

(

1 0
2 1

)

.
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As usual, we denote by Γ(2) the congruence subgroup

Γ(2) = {γ ∈ SL2(Z) : γ ≡ I (mod 2)} ,
where I is the identity matrix. The group Γ(2) is generated by A, B and −I; see,
for instance, [Yos97, Exercise II.6, p.34].

Remark 3.1. We note that, as is well-known, Γ(2) is conjugate to Γ0(4) under
τ 7→ 2τ , and that in this setting the group 〈A,B〉 corresponds to Γ1(4).

In terms of the matrices A and B, we then have

(9) ψ2m(Aτ) = ψ2m(τ), ψ2m(Bτ) =
1

(2τ + 1)2m−1
ψ2m(τ) + π2mf2m(τ),

where f2m(τ), given in (6), is a rational function over Q.
Note that the first equation in (9) simply expresses the periodicity of ψ2m, that is

ψ2m(τ +2) = ψ2m(τ), while the second one is the functional equation (6) discussed
in the previous section.

Theorem 3.2. Let m and k be positive integers. Then

ψ2m(
√
k) ∈ π2mQ.

Proof. Following [LRR14], we observe that if the integers X and Y solve Pell’s
equation

(10) X2 − kY 2 = 1,

then D ·
√
k =

√
k, where D is the matrix

D =

(

X kY
Y X

)

∈ SL2(Z).

Here, and in the sequel, we let 2 × 2 matrices act on complex numbers by linear
fractional transformations and write

(

a b
c d

)

· x =
ax+ b

cx+ d
.

A proof that for every positive nonsquare k there exist nontrivial solutions X , Y
to Pell’s equation (10) was first published by Lagrange in 1768 [Lag92]. For further
information and background on Pell’s equation we refer to [Len02].

We now make the simple observation that, by (10),

D2 =

(

X kY
Y X

)2

=

(

X2 + kY 2 2kXY
2XY X2 + kY 2

)

∈ Γ(2).

Hence, we can always find C ∈ 〈A,B,−I〉 = Γ(2), C 6= ±I, such that C ·
√
k =

√
k.

Let C =

(

a b
c d

)

be such a matrix. Note that necessarily c 6= 0.

Repeatedly applying the functional equations (9), we deduce that

ψ2m(
√
k) = ψ2m(C ·

√
k) =

1

(c
√
k + d)2m−1

ψ2m(
√
k) + π2mf2m,C(

√
k),

where f2m,C(τ) ∈ Q(τ) is a rational function with rational coefficients. Conse-
quently,

ψ2m(
√
k) = π2mgk(

√
k)
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for some rational function gk(τ) ∈ Q(τ). On the other hand, the above argument

applied to −
√
k shows that ψ2m(−

√
k) = π2mgk(−

√
k). Since ψ2m is even, it

follows that

gk(
√
k) = gk(−

√
k),

which implies that gk(
√
k) is a rational number. �

Example 3.3. We now illustrate Theorem 3.2 by evaluating ψ2(
√
2). In this

case, the fundamental solution to Pell’s equation (10) is given by (X,Y ) = (3, 2),

obtained from the first two terms of the continued fraction of
√
2. Then

C =

(

3 4
2 3

)

= −AB−1A,

and, indeed, one easily verifies that
√
2 is fixed under AB−1A. In the present case

s = 1, and the transformations (9) satisfied by ψ2 take the form

(11) ψ2(Aτ) = ψ2(τ), ψ2(Bτ) =
1

2τ + 1
ψ2(τ) + π2f2(τ),

with

f2(τ) =
τ(3τ2 + 4τ + 2)

6(2τ + 1)2
.

We therefore find that

ψ2(AB
−1Aτ) = ψ2(B

−1Aτ)

= (2B−1Aτ + 1)
[

ψ2(Aτ) − π2f2(B
−1Aτ)

]

= − 1

2τ + 3
ψ2(τ) −

(τ + 2)(3τ2 + 8τ + 6)

6(2τ + 3)2
π2.

For the second equality we applied the second transformation of (11) with B−1Aτ
in place of τ , while for the third equality we use the fact that B−1Aτ = − τ+2

2τ+3 .

For τ =
√
2 this reduces to

ψ2(
√
2) = (2

√
2− 3)ψ2(

√
2) +

2

3
(
√
2− 2)π2,

which has the solution ψ2(
√
2) = −π2

3 , in agreement with the value given in
[LRR14]. Families of more general explicit evaluations of ψ2m at real quadratic
irrationalities are derived in Example 6.8.

In fact, it is the case that ψ2m(
√
r) is a rational multiple of π2m whenever r is a

rational number. This may be shown in essentially the same fashion, as we indicate
next.

Theorem 3.4. Let m be a positive integer and r a positive rational number such
that

√
r is not a rational number with an even denominator. Then

ψ2m(
√
r) ∈ π2mQ.

Proof. Write r = a
b , where a and b are positive integers. Similarly to the proof

of Theorem 3.2, we observe that if the integers X and Y solve Pell’s equation
X2 − abY 2 = 1, then D · √r = √

r, where D is the matrix

D =

(

X aY
bY X

)

∈ SL2 (Z) .
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Again, one observes that D2 ∈ Γ(2). Hence we can find C ∈ 〈A,B,−I〉 = Γ(2),
C 6= ±I, such that C · √r = √

r.
It remains to proceed exactly as in the proof of Theorem 3.2. �

Remark 3.5. We remark that (parts of) the proofs of Theorems 3.2 and 3.4 also
apply to other functions that satisfy a modular transformation which is of a similar
form as the one for the secant Dirichlet series ψ2m. This includes the class of Eichler
integrals to which, as discussed in the Section 5, ψ2m belongs.

4. Eisenstein series

We begin this section by observing a natural relation between the secant Dirichlet
series ψ2m and Eisenstein series. Specifically, we note that the 2mth derivative of
ψ2m is, essentially, an Eisenstein series of weight 2m+1 and level 4. In the language
of Section 5, this means that the secant Dirichlet series are Eichler integrals of
certain Eisenstein series. In order to investigate Eichler integrals of Eisenstein
series in general, we recall basic facts about Eisenstein series in this section.

Throughout, we write D = d
dτ and q = e2πiτ . For n > 0, we denote with En the

nth Euler number, defined by

(12) sechx =

∞
∑

n=0

En
xn

n!
,

where |x| < π.

Lemma 4.1. We have

D2m[ψ2m(τ/2)] =
(2m)!

π

∑′

k,j∈Z

χ−4(j)

(kτ + j)2m+1
− (−1)mE2mπ

2m

22m+1
,

where χ−4 = (−4
· ) is the nonprincipal Dirichlet character modulo 4 (that is, χ−4(n) =

0 for even n, and χ−4(n) = (−1)(n−1)/2 for odd n).

Proof. In light of the partial fraction expansion of the secant function

sec
(πτ

2

)

=
4

π

∑

j>1

χ−4(j)j

j2 − τ2
= lim

N→∞

2

π

N
∑

j=−N

χ−4(j)

τ + j
,

we derive that

Dk sec
(πτ

2

)

=
2(−1)kk!

π

∑

j∈Z

χ−4(j)

(τ + j)k+1
.

Consequently,

D2m
∑

n>1

sec
(

πnτ
2

)

n2m
=

2(2m)!

π

∑

k>1

∑

j∈Z

χ−4(j)

(kτ + j)2m+1

=
(2m)!

π

∑′

k,j∈Z

χ−4(j)

(kτ + j)2m+1
− 2(2m)!

π
L(χ−4, 2m+ 1),(13)

where

L(χ−4, s) =

∞
∑

n=1

χ−4(n)

ns
=

∞
∑

n=0

(−1)n

(2n+ 1)s
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is the Dirichlet L-series attached to χ−4, also known as the Dirichlet beta function.
Using Euler’s well-known evaluation [Ayo74]

(14) L(χ−4, 2m+ 1) =
1

2

(−1)mE2m

(2m)!

(π

2

)2m+1

in (13), we complete the proof of Lemma 4.1. �

Example 4.2. In the case m = 1, we find that

D2ψ2(τ/2) =
2

π

∑′

k,j∈Z

χ−4(j)

(kτ + j)3
− π2

8
,

since L(χ−4, 3) =
π3

32 . The Eisenstein series

∑′

k,j∈Z

χ−4(j)

(4kτ + j)3
=
π3

4

[

1

4
− q − q2 + 8q3 − q4 − 26q5 + · · ·

]

is a modular form of weight 3, level 4 and character χ−4.

Define, as in [Miy06, Chapter 7], the Eisenstein series

(15) Ek(τ ;χ, ψ) =
∑′

m,n∈Z

χ(m)ψ(n)

(mτ + n)k
,

where k > 2, and χ and ψ are Dirichlet characters modulo L and M , respectively.
As detailed in [Miy06, Chapter 7], these Eisenstein series can be used to generate
all Eisenstein series with respect to any congruence subgroup.

Example 4.3. By Lemma 4.1, the secant Dirichlet series ψ is connected with the
case ψ = χ−4 and χ = 1, the principal character modulo 1. To be precise,

(16) D2m[ψ2m(τ/2)] =
(2m)!

π
[E2m+1(τ ; 1, χ−4)− E2m+1(i∞; 1, χ−4)] .

That the constant term on the right-hand side indeed agrees with the one stated in
Lemma 4.1 will become clear from the facts about the Eisenstein series Ek(τ ;χ, ψ)
which we review next.

Example 4.4. As detailed in Section 8.1, the cotangent Dirichlet series ξs(τ),
introduced in (2), is in a similar way related to the Eisenstein series E2m(τ ; 1, 1),
which is modular with respect to the full modular group.

In the sequel, we always assume that χ(−1)ψ(−1) = (−1)k since, otherwise,
Ek(τ ;χ, ψ) = 0. In order to derive the Fourier expansion of the Eisenstein series, we
recall that, by the character analogue of the Lipschitz summation formula [Ber75a],
for any primitive Dirichlet character ψ of modulus M ,

∞
∑

n=−∞

ψ(n)

(τ + n)s
= G(ψ)

(−2πi/M)s

Γ(s)

∞
∑

m=1

ψ̄(m)ms−1e2πimτ/M .
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Here, and in the sequel, G(ψ) =
∑M

a=1 ψ(a)e
2πia/M denotes the Gauss sum associ-

ated with ψ. If ψ is primitive, we thus find that

Ek(τ ;χ, ψ) = a0(Ek) + 2

∞
∑

m=1

χ(m)
∑

n∈Z

ψ(n)

(mτ + n)k

= a0(Ek) + 2G(ψ)
(−2πi/M)k

Γ(k)

∞
∑

m=1

χ(m)

∞
∑

n=1

ψ̄(n)nk−1e2πinmτ/M

= a0(Ek) +A
∞
∑

n=1

an(Ek)e
2πinτ/M ,(17)

where A = 2G(ψ)(−2πi/M)k/Γ(k) and

a0(Ek) =

{

2L(k, ψ), if χ = 1,
0, otherwise,

an(Ek) =
∑

d|n

χ(n/d)ψ̄(d)dk−1.

We note that the series in (17) converges for any complex value of k, and hence
(17) provides the analytic continuation of (15) to the entire complex k-plane.

Example 4.5. In light of Example 4.3, we therefore find that the q-expansion of
the secant Dirichlet series is given by

(18) ψ2m(2τ) = 2
∑

n>1





∑

d|n

χ−4(d)d
2m





qn

n2m
.

Recall that the L-function of a modular form f(τ) =
∑∞

n=0 b(n)e
2πinτ/λ is de-

fined as

(19) L(f, s) =
(2π)s

Γ(s)

∫ ∞

0

[f (iτ)− f(i∞)] τs−1dτ = λs
∞
∑

n=1

b(n)

ns
.

As another consequence of (17), if ψ is primitive, the L-function ofE(τ) = Ek(τ ;χ, ψ)
is given by

(20) L(E, s) = AM sL(χ, s)L(ψ̄, 1− k + s).

Depending on the parity of s, the values of L(E, s) can be evaluated in terms of
generalized Bernoulli numbers Bn,χ, which are defined by

(21)
∞
∑

n=0

Bn,χ
xn

n!
=

L
∑

a=1

χ(a)xeax

eLx − 1
,

if χ is a Dirichlet character modulo L. We observe that, for n 6= 1, the classical
Bernoulli numbers Bn are equal to Bn,χ with χ = 1. Similarly, the Euler numbers
are connected with the case χ = χ−4:

(22)
1

2

E2m

(2m)!
= −B2m+1,χ

−4

(2m+ 1)!
.

Generalized Bernoulli numbers are intimatly related to values of Dirichlet L-series.
Let n > 0 be an integer and χ a primitive Dirichlet character of conductor L such
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that χ(−1) = (−1)n. Then, as detailed, for instance, in [Miy06, Thm. 3.3.4],

L(n, χ) = (−1)n−1G(χ)

2

(

2πi

L

)n
Bn,χ̄
n!

,(23)

L(1− n, χ) = −Bn,χ/n.
On the other hand, if χ(−1) 6= (−1)n, then L(1−n, χ) = 0 unless χ = 1 and n = 1.

Finally, let us recall the basic transformation properties of the Eisenstein series
Ek(τ ;χ, ψ), which are detailed, for instance, in [Miy06, Chapter 7]. Denote with

Γ0(L,M) the group of matrices γ =

(

a b
c d

)

∈ SL2(Z) such that M |b and L|c.
For any such γ,

(24) Ek(τ ;χ, ψ)|kγ = χ(d)ψ̄(d)Ek(τ ;χ, ψ).

Moreover,

(25) Ek(τ ;χ, ψ)|kS = χ(−1)Ek(τ ;ψ, χ).

5. Review of Eichler integrals

In the language of Eichler integrals, to be reviewed next, the observation of
Section 4 becomes the simple statement that the secant Dirichlet series ψ2m are
Eichler integrals of weight 2m+1 Eisenstein series of level 2. As such, it is natural
that the ψ2m satisfy modular functional equations as in Section 2. In fact, it
becomes a priori clear that the ψ2m satisfy modular relations such as (3), in which
the coefficients of the rational function on the right-hand side are determined by
the period polynomial of the Eichler integral.

Lemma 4.1 shows that

F2m(τ) := ψ2m(τ) +
E2m

2(2m)!
(πiτ)2m

has the property that its 2mth derivative is a modular form with respect to Γ =
〈A,B〉 of weight 2m + 1 (with A and B as defined in (8)). In other words, F2m

is an Eichler integral (we adopt the common custom and also refer to ψ2m as an

Eichler integral). In particular, for all γ =

(

a b
c d

)

∈ Γ,

(26) (cτ + d)2m−1F2m(γτ) − F2m(τ)

is a polynomial of degree 2m − 1, the period polynomial of F2m. Rewriting (26)
in terms of ψ2m(τ), we find that ψ2m(τ) satisfies a functional equation of the form
(3), where the rational function on the right-hand side is expressed in terms of the
period polynomial of F2m. For the general theory of period polynomials we refer
to [PP13] and the references therein. A very brief introduction, suitable for our
purposes, is given next.

Remark 5.1. A direct way to see that (26) is indeed a polynomial of degree 2m−1
is offered by Bol’s identity [Bol49]. It states that, for all sufficiently differentiable

F and γ =

(

a b
c d

)

∈ SL2(R),

(27) (Dk+1F )(γτ) = (cτ + d)k+2Dk+1
[

(cτ + d)kF (γτ)
]

.

For the present purpose, we apply (27) with F = F2m and k = 2m− 1.
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In the following we adopt the notation of [PP13]. Let A be the space of holo-
morphic functions on the upper half-plane H. As usual, Γ1 = SL2(Z) acts on H
by linear fractional transformations, and on A via the slash operators; namely, if
f ∈ A and k is an integer, then

(f |kg)(τ) = (cτ + d)−kf(gτ), g =

(

a b
c d

)

∈ Γ1.

This action extends naturally to the group algebra C[Γ1].
As usual, we denote with T , S and R the matrices

(28) T =

(

1 1
0 1

)

, S =

(

0 −1
1 0

)

, R =

(

1 0
1 1

)

,

and recall that the matrices T and S generate Γ1.
From now on, let f be a (not necessarily cuspidal) modular form of integral

weight k > 2 with respect to Γ, with Γ being a subgroup of finite index of Γ1. Note
that the modularity of f implies that f |kg = f for all g ∈ Γ. In the sequel, we
will abbreviate f |g = f |kg since this is the only action of Γ1 on modular forms of
weight k that we consider.

Throughout this section, w = k−2. Let Vw be the space of complex polynomials
of degree at most w. The (multiple) period polynomial, introduced in [PP13],
attached to f is the map ρf : Γ\Γ1 → Vw defined by

(29) ρf (A)(X) =

∫ i∞

0

[f |A(t)− a0(f |A)] (t−X)wdt.

In the sequel, we will often omit the dependence on X and just write ρf (A) for
the left-hand side. The goal of the final set of definitions is to connect these period
polynomials, whose coefficients encode the critical L-values of f , to the transfor-
mation properties of Eichler integrals of f . The (multiple) Eichler integral of f ,

introduced in [PP13], is the function f̃ : Γ\Γ1 → A defined by

(30) f̃(A)(τ) =

∫ i∞

τ

[f |A(z)− a0(f |A)] (z − τ)wdz,

with a0(f) = f(i∞) denoting the constant term of the Fourier expansion of f . If

g ∈ Γ1 then f̃ |g(A) = f̃(Ag−1)|−wg defines an action of Γ1, and hence C[Γ1], on

functions f̃ : Γ\Γ1 → A.
The following result is [PP13, Proposition 8.1], which may also be found in

[Wei77], where it is expressed in slightly different terms.

Proposition 5.2. With f as above, define ρ̂f = f̃ |(1−S). Then, for any A ∈ Γ\Γ1,

ρ̂f (A) = ρf (A) + (−1)w
a0(f |A)
w + 1

Xw+1 +
a0(f |AS−1)

w + 1
X−1.

Note that matters simplify when only cusp forms are considered; in that case,
ρf and ρ̂f coincide. Though not necessarily a polynomial in the Eisenstein case, we

will also refer to ρ̂f , as well as to f̃ |(1 − γ) for γ ∈ Γ1, as period polynomials of f .

Example 5.3. Let us make these definitions very explicit in the case where f
is the Eisenstein series E(τ) = Ek(τ ;χ, ψ) introduced in (15). Then E|S =
χ(−1)Ek(τ ;ψ, χ) by (25), and thus

(31) ρ̂E(I) = Ẽk(X ;χ, ψ)− ψ(−1)Xk−2Ẽk(−1/X ;ψ, χ),
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assuming that χ(−1)ψ(−1) = (−1)k (since, otherwise, E = 0). Here, and in the
sequel, we denote, with a slight abuse of notation,

Ẽk(τ ;χ, ψ) = Ẽ(I)(τ),

where the right-hand side is defined by (30). It follows from the Fourier expansion
(17) that, for primitive ψ,

(32) Ẽk(τ ;χ, ψ) = − 4πi

k − 1

G(ψ)

M

∞
∑

n=1





∑

d|n

ψ̄(n/d)χ(d)d1−k



 e2πinτ/M .

Example 5.4. Following Example 4.3, we observe from (16) that

(33) ψ2m(τ/2) =
2m

π
Ẽ2m+1(τ ; 1, χ−4),

thus making explicit the nature of ψ2m as an Eichler integral. In the present context,
the functional equation (6), on replacing τ with τ/2 and the appropriate scaling,
translates into

(34) Ẽ2m+1(τ ; 1, χ−4)|1−2m(R− 1) =
π2m+1

2m

[

z2m−1
] sin(τz/2)

sin(z) sin((τ + 1)z)
,

where R is as in (28).

The next result allows us to express the left-hand side of (34) in terms of ρ̂E2m+1

which, in the sense of Proposition 5.2, is a period polynomial of E2m+1.

Proposition 5.5. Let R be as in (28). Let f be a modular form for a group Γ 6 Γ1,
and let n be such that Rn ∈ Γ. Then

f̃ |(1−Rn)(I) = ρ̂f |(1−Rn)(I).

Proof. For any C =

(

a b
c d

)

∈ Γ, it follows from the definition of ρ̂f that

ρ̂f |(1 − C) = f̃ |(1 − S)(1− C) = f̃ |(1− C)− f̃ |(S − SC).

It therefore suffices to show that f̃ |S(I) = f̃ |SRn(I). To see this, we observe that,
for C ∈ Γ as above,

f̃ |SC(I) = f̃(S−1)|−wSC = (aτ + b)w
∫ i∞

SCτ

[

f |S−1(z)− a0(f |S−1)
]

(z − SCτ)wdz.

The change of variables z = SCS−1z′ yields

f̃ |SC(I) = τw
∫ a/b

Sτ

[

f |S−1(z)− (−bz + a)−ka0(f |S−1)
]

(z − Sτ)wdz,

and the desired equality follows because, upon setting a = 1 and b = 0, the right-
hand side does not depend on the value of c. �
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6. Period polynomials of Eisenstein series

In the case χ = 1 and ψ = 1, the Eisenstein series E(τ) = E2k(τ ; 1, 1) is the usual
Eisenstein series of weight 2k with respect to the full modular group. Its period
polynomial, defined in Proposition 5.2 and made explicit in (31) for Eisenstein
series, is well-known to be
(35)

ρ̂E(I) = − (2πi)2k

2k − 1

[

k
∑

s=0

B2s

(2s)!

B2k−2s

(2k − 2s)!
X2k−2s−1 +

ζ(2k − 1)

(2πi)2k−1
(X2k−2 − 1)

]

;

compare, for instance, [Zag91, (11)]. On the other hand, this evaluation is equiva-
lent to the formula (48), which Ramanujan famously recorded and which we briefly
discuss in Section 8.1. A beautiful account of this connection is contained in
[GMR11].

The (Laurent) polynomials on the right-hand side of (35) have interesting prop-
erties, which have been studied, for instance, in [GMR11], [MSW11], and [LR13].
In Section 7, we indicate that the generalized polynomials obtained in this section
for higher level share similar properties.

In light of Example 5.4 and Proposition 5.5, the functional equations satisfied
by the secant Dirichlet series are determined by the period polynomials associated
to the Eisenstein series E2k+1(τ ; 1, χ−4). We next compute the period polynomials
of the Eisenstein series E2k+1(τ ;χ, ψ), with χ and ψ being any pair of primitive
Dirichlet characters.

Theorem 6.1. Let k > 3, and let χ and ψ be primitive Dirichlet characters modulo
L and M , respectively, such that χ(−1)ψ(−1) = (−1)k. For the Eisenstein series
E(τ) = Ek(τ ;χ, ψ), defined in (15),

ρ̂E(I) = −4ψ(−1)

k − 1

k
∑

s=0
χ(−1)=(−1)s

L(s, χ)L(k − s, ψ)Xk−s−1

−2ψ(−1)

k − 1
πi
[

εχL(k − 1, ψ)Xk−2 − εψL(k − 1, χ)
]

.(36)

Here, εχ = 1 if χ = 1, and εχ = 0 otherwise.

Proof. We first observe, from the definition (29), the general fact that, for a modular
form E of weight k,

ρE(A) = (−1)k−1
k−1
∑

s=1

(

k − 2

s− 1

)

Γ(s)

(2πi)s
L(E|A, s)Xk−s−1,

with the L-function of E as defined in (19). Let s be an integer with 0 < s < k.
We deduce from (20) and the functional equation, given, for instance, in [Apo76,
Theorem 12.11, p. 263],

(37) L(1− s, ψ̄) =
M s−1Γ(s)

(2π)s
(e−πis/2 + ψ(−1)eπis/2)τ(ψ̄)L(s, ψ)

that, for s such that χ(−1) = (−1)s,

L(E, s) = 4(−1)s(2πi)s
Γ(k − s)

Γ(k)
L(s, χ)L(k − s, ψ).
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On the other hand, for s such that χ (−1) 6= (−1)
s
, we have L(ψ̄, 1 − k + s) = 0,

which implies that L (E, s) = 0 unless s = 1, χ = 1 or s = k− 1, ψ = 1. Combining
these, we find that

ρE(I) = −4ψ(−1)

k − 1

k−1
∑

s=1
χ(−1)=(−1)s

L(s, χ)L(k − s, ψ)Xk−s−1

− (−1)k

2πi
εχL(E, 1)X

k−2 − (−1)k

(2πi)k−1
Γ(k − 1)εψL(E, k − 1),

where the sum is over all integers s such that 0 < s < k and χ(−1) = (−1)s. From
(20), together with the functional equation (37) of the involved Dirichlet L-series,
we deduce that, assuming χ = 1,

L(E, 1) =
(2πi)2

k − 1
L(k − 1, ψ).

On the other hand, if ψ = 1, then

L(E, k − 1) = − (−2πi)k

(k − 1)!
L(k − 1, χ).

It follows from Proposition 5.2 that

ρ̂E(I) = ρE(I) + (−1)k
a0(E)

k − 1
Xk−1 +

a0(E|S−1)

k − 1
X−1.

The values for a0(E) and a0(E|S−1) = (−1)ka0(E|S) are given by (17) in combi-
nation with (25). Finally, using the fact that L(0, χ) = 0 for any even Dirichlet
character χ 6= 1, we obtain (36). �

Observe that, in the case χ = ψ = 1, using Euler’s identity [Ayo74]

ζ(2m) = (−1)m+1 B2m

2(2m)!
(2π)2m,

we obtain from Theorem 6.1 the well-known special case (35). In the same spirit,
Theorem 6.1 may always be rewritten, using (23), in terms of generalized Bernoulli
numbers as we record below. For the cases where χ = 1 or ψ = 1 the appropriate
extra terms need to be inserted.

Corollary 6.2. Under the assumptions of Theorem 6.1, if, additionally, χ and ψ
are both nonprincipal, then

ρ̂E(I) = −χ(−1)G(χ)G(ψ)
(2πi)k

k − 1

k
∑

s=0

Bk−s,χ̄
(k − s)!Lk−s

Bs,ψ̄
s!M s

Xs−1.

Remark 6.3. We note that similar results, based on residue calculations in the
spirit of Section 2, are obtained in [Ber75b]. In fact, the Eisenstein series considered
in [Ber75b], namely

∑′

m,n∈Z

χ(m)ψ(n)

((m+ r1)τ + n+ r2)k
,

have the two extra parameters r1 and r2 in comparison with Ek(τ ;χ, ψ). How-
ever, the analysis in [Ber75b] is restricted to the case when χ and ψ are primitive
characters of the same modulus.
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Example 6.4. In the case χ = ψ = 1, Theorem 6.1 reduces to Ramanujan’s
identity (35), which in particular yields an interesting formula for the odd zeta
values ζ(2k − 1); see also [Gro70]. This formula has inspired much research, such
as [GMR11]. Analogous formulas for other Dirichlet L-series have been derived in
[Kat74] using partial fraction expansions. We will now illustrate how the results
of [Kat74] follow from the special case ψ = 1 of Theorem 6.1, thus providing an
alternative proof. In the setting of Theorem 6.1, with ψ = 1 and χ 6= 1, we have

ρ̂E(I) =
2πi

k − 1
L(k − 1, χ)− 4

k − 1

⌊k/2⌋
∑

j=0

L(k − 2j, χ)ζ(2j)X2j−1.

On the other hand, from (31),

ρ̂E(I) = Ẽk(τ ;χ, 1)− τk−2Ẽk(−1/τ ; 1, χ).

Using the Fourier expansion (32), as well as G(χ)G(χ̄) = χ(−1)L and the simple
summations

∞
∑

n=1





∑

d|n

χ(d)d1−k



 qn =

∞
∑

n=1

χ(n)

nk−1

qn

1− qn
,

∞
∑

n=1





∑

d|n

χ(n/d)d1−k



 qn =

L
∑

a=1

χ(a)

∞
∑

n=1

1

nk−1

qan

1− qLn
,

we obtain

ρ̂E(I) =
4πi

k − 1

[

F1(τ) −
(−τ)k−2

G(χ̄)
F2(−1/τ)

]

,

where, similar to [Kat74],

F1(τ) =

∞
∑

n=1

χ(n)

nk−1

e2πinτ

e2πinτ − 1
,

F2(τ) =

L
∑

a=1

χ̄(a)

∞
∑

n=1

1

nk−1

e2πianτ/L

e2πinτ − 1
.

Solving for L(k − 1, χ), we have arrived at

1

2
L(k − 1, χ) = F1(τ) −

(−τ)k−2

G(χ̄)
F2(−1/τ) +

1

πi

⌊k/2⌋
∑

j=0

L(k − 2j, χ)ζ(2j)τ2j−1 ,

which is equivalent to the main result of [Kat74]. Note that this formula expresses
the L-value as a combination of two Eichler integrals and a power of π times a
Laurent polynomial with rational coefficients. In Example 7.7, similar formulas
for these L-values are given, where only one Eichler integral is involved (evaluated
at two arguments) and the polynomials appear to have the additional property of
having all their nonreal roots on the unit circle.

With Theorem 6.1 in place, it is easy to deduce functional equations such as
(6), which is the case χ = 1, ψ = χ−4 of the next result. Note that the restriction
to ψ 6= 1 is just to avoid the presence of an additional term. The case ψ = 1 is
discussed in Example 7.7, where the formulas promised at the end of Example 6.4
are derived.
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Corollary 6.5. Let k > 3, and let χ and ψ be primitive Dirichlet characters modulo
L and M , respectively, such that χ(−1)ψ(−1) = (−1)k. Let R be as in (28). If
ψ 6= 1, then, for any integer n such that L|n,

Ẽk(X ;χ, ψ)|2−k(1−Rn) = −4ψ(−1)

k − 1

k
∑

s=0
χ(−1)=(−1)s

L(s, χ)L(k−s, ψ)Xk−s−1(1−(nX+1)s−1).

Proof. Recall from (24) thatE(τ) = Ek(τ ;χ, ψ) is modular with respect to Γ0(L,M).
Since Rn ∈ Γ0(L,M), we may apply Proposition 5.5 and Theorem 6.1 to obtain

Ẽk(X ;χ, ψ)|2−k(1−Rn) = Ẽ|(1− Rn)(I) = ρ̂E(I)|−w(1−Rn),

with the Laurent polynomial ρ̂E(I) given explicitly in (36). Note that

Xj|−w (1−Rn) = Xj − (nX + 1)
w

(

X

nX + 1

)j

= Xj
(

1− (nX + 1)
w−j

)

.

In particular, Xw|−wB = Xw, so that the term in (36) involving L(k − 1, ψ), if at

all existent, is eliminated in Ẽ|(1−Rn)(I). �

Example 6.6. As indicated in Example 5.4, Corollary 6.5 specializes to a variation
of Theorem 2.1 on setting χ = 1 and ψ = χ−4. Namely, using (22) to relate the
generalized Bernoulli numbers to Bernoulli and Euler numbers, we find that, for
any positive integer m, the secant Dirichlet series satisfies the functional equation

(2τ + 1)2m−1ψ2m

(

τ

2τ + 1

)

− ψ2m(τ)

= (πi)2m
m
∑

n=0

22n−1B2nE2m−2n

(2n)!(2m− 2n)!
τ2m−2n

[

1− (2τ + 1)2n−1
]

.(38)

We note that (38) is the same functional equation as (6) but representing the right-
hand side in a somewhat different way; see Remark 6.7.

Remark 6.7. Let us indicate how to see, in a direct fashion, that (6) and (38)
represent the same functional equation. Note that (38) can be expressed as

(39) ψ2m(τ)|1−2m(1−B) = τ2m−1
[

h2m
(

1
τ

)

− h2m
(

2 + 1
τ

)]

,

where h2m(τ) is the rational function

(40) h2m(τ) = (πi)2m
m
∑

n=0

B2nE2m−2n

(2n)!(2m− 2n)!
(2τ)2n−1.

By the definitions of the Bernoulli and Euler numbers, (7) and (12), we find that

h2m(τ) = 1
2π

2m[z2m−1] cot(τz) sec(z).

Hence, the right-hand side of (38) and (39) equals

1
2π

2m[z2m−1] sec(τz) [cot(z)− cot((2τ + 1)z)] .

The equivalence of (6) and (38) then follows from

sec(τz) [cot(z)− cot((2τ + 1)z)] =
sin(τz)

sin(z) sin((2τ + 1)z)
,

which is obtained from basic trigonometric identities.
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As an application of Corollary 6.5, we now derive formulas for the values of ψ2m

at families of real quadratic irrationalities, thus complementing and illustrating the
results of Section 3 in an explicit fashion.

Example 6.8. Since Corollary 6.5 applies to all powers of R, which lie in the
appropriate modular subgroup, we find that, for positive integers m and integers
µ,

(2µτ + 1)2m−1ψ2m

(

τ

2µτ + 1

)

− ψ2m(τ)

= (πi)2m
m
∑

n=0

22n−1B2nE2m−2n

(2n)!(2m− 2n)!
τ2m−2n

[

1− (2µτ + 1)2n−1
]

.(41)

We now demonstrate how to use these functional equations to obtain families of
explicit evaluations of ψ2m at certain real quadratic irrationalities. Let τ0 be fixed
by AλBµAν , that is AλBµAντ0 = τ0. A brief calculation shows that

τ0 = λ− ν ±
√

(λ+ ν)
(

1
µ + (λ+ ν)

)

.

Denote with Tm,µ = ψ2m|1−2m(Bµ − I) the right-hand side of (41). It follows from

ψ2m(AλBµAντ) =
ψ2m(Aντ) + Tm,µ(A

ντ)

(2µAντ + 1)2m−1
,

together with the fact that τ0 is fixed by AλBµAν , that

ψ2m(τ0) =
Tm,µ(τ0 + 2ν)

(2µ(τ0 + 2ν) + 1)2m−1 − 1
.

A straightforward, but slightly tedious, calculation using (41) and the explicit value
of τ0 shows that

(42) ψ2m(τ0) = −(πi)2m
m
∑

n=0

22n−1

µ2m−2n

B2nE2m−2n

(2n)!(2m− 2n)!

rn
rm

,

where rn are the rational numbers

rn =
1

2

[

(1 +
√
α)2n−1 + (1 −

√
α)2n−1

]

=

{

1
1−α , if n = 0,
∑n−1
j=0

(

2n−1
2j

)

αj , if n > 1,

and α = 1
µ(ν+λ) + 1. Note that this is an explicit illustration of the general fact,

proved in Theorem 3.4, that ψ2m(τ) is a rational multiple of π2m whenever τ is a
real quadratic irrationality.

We note that the right-hand side of (42) only depends on κ = ν+λ but not on ν
and λ individually. For the left-hand side, this follows from the obvious periodicity
relation ψ2m(τ + 2) = ψ2m(τ). The first two cases of (42) can thus be stated, in
equivalent forms, as

ψ2

(

κ+

√

κ
(

1
µ + κ

)

)

=
π2

6

(

1 +
3κ

2µ

)

,

ψ4

(

κ+

√

κ
(

1
µ + κ

)

)

=
π4

90

(

1 +
5κ

2µ
− 5κ2(16µ2 − 15)

8µ2(4κµ+ 3)

)

,
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where κ and µ are integers and µ 6= 0. The first of these, in the special case κ = 2λ,
is also given in [LRR14].

Remark 6.9. Using the methods of [Ber73], [Ber75b] or, alternatively, [Raz77],

one can derive the general transformation laws of the Eichler integrals Ẽk(τ ;χ, ψ),
and, in particular, ψ2m(τ), under arbitrary elements of the full modular group.
Here, we do not, however, pursue this further.

7. Zeros of generalized Ramanujan polynomials

It has recently been shown in [CFI12] and [EGR13] that the nontrivial zeros of
period polynomials of modular forms, which are Hecke eigenforms of level 1, all lie
on the unit circle. In this section, we consider the Eisenstein case of higher level by
investigating the zeros of the period polynomials calculated in the previous section.
We again find that, at least conjecturally, most of the roots lie on a circle in the
complex plane. The observations suggest that the problem solved by [CFI12] and
[EGR13] is interesting in the higher level case as well.

An application of these considerations is that knowledge of the location of the
zeros of the period polynomials calculated in the previous section gives rise to
explicit formulas for Dirichlet L-values of “wrong” parity (that is, values at integers
of parity opposite to the Dirichlet character) in terms of Eichler integrals. This is
made explicit in Example 7.7. The special case of the principal character is detailed
in [GMR11], in which case odd zeta values are expressed in terms of the difference
of two Eichler integrals at algebraic argument of modulus 1.

For positive integer k, and Dirichlet characters χ and ψ modulo L and M , we
define the generalized Ramanujan polynomial

(43) Rk(X ;χ, ψ) =
k
∑

s=0

Bs,χ
s!

Bk−s,ψ
(k − s)!

(

X − 1

M

)k−s−1

(1−Xs−1).

Note that this is a polynomial if χ and ψ are both nonprincipal, and a Lau-
rent polynomial otherwise. Further note that, if χ(−1)ψ(−1) 6= (−1)k, then
Rk(X ;χ, ψ) = 0, unless ψ = 1 in which case

Rk(X ;χ, ψ) =
1

2

Bk−1,χ

(k − 1)!
(1−Xk−2).

In the sequel, we will therefore often assume, without loss of generality and as we
did in previous sections, that χ(−1)ψ(−1) = (−1)k.

In [MSW11] the Ramanujan polynomials are, essentially, defined as

(44) Rk(X) =

k
∑

s=0

Bs
s!

Bk−s
(k − s)!

Xs−1,

where k is an even integer (in [MSW11] the index k is shifted by 1, X appears with
exponent s, and the definition differs for k = 2). The next result shows that the
generalized Ramanujan polynomials, despite their different appearance, reduce to
the Ramanujan polynomials when χ = 1 and ψ = 1.

Proposition 7.1. For k > 1, R2k(X ; 1, 1) = R2k(X).
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Proof. As evidenced by (35), the polynomial R2k(X) is the odd part of the period
polynomial of the level 1 Eisenstein series E2k(τ ; 1, 1). As such it satisfies the
relations [Zag91]

(45) R2k(X)|2−2k(1 + S) = R2k(X)|2−2k(1 + U + U2) = 0.

Here, U = TS with T and S as defined in (28). On the other hand, by construction
(43),

R2k(X ; 1, 1) = R2k(X)|2−2k(1−R)T−1.

A brief calculation reveals that (1 + U + U2)T = T + R + S. Hence, using both
relations (45), we find

R2k(X)|2−2k(1−R) = R2k(X)|2−2k(1 + T + S) = R2k(X)|2−2kT,

which proves the claim. �

The next example indicates that the definition (43) of the generalized Ramanujan
polynomials is natural, by connecting them to period polynomials of generalized
Eisenstein series studied in Section 6.

Example 7.2. As in Corollary 6.5, let k > 3, and let χ and ψ 6= 1 be primitive
Dirichlet characters modulo L andM , respectively, such that χ(−1)ψ(−1) = (−1)k.
Then, with R as in (28),

Ẽk(X ;χ, ψ)|2−k(1−RL) = −χ(−1)G(χ)G(ψ)
(2πi/L)k

k − 1

L

M
Rk(LX + 1; χ̄, ψ̄).

In other words, up to some scaling and a linear change of variables, the polynomial
Rk(X ; χ̄, ψ̄) is a period polynomial of the Eisenstein series Ek(τ ;χ, ψ).

Conjecture 7.3. For nonprincipal real Dirichlet characters χ and ψ, the polyno-
mial Rk(X ;χ, ψ) is unimodular, that is, all its roots lie on the unit circle.

We have verified Conjecture 7.3 numerically for all k 6 50 and all characters of
modulus up to 100. We note that it follows from Proposition 7.1 and the results
in [MSW11] that all nonreal zeros of Rk(X ; 1, 1) lie on the unit circle. On the
other hand, it is conjectured (in equivalent form) in [LRR14] that all roots of
Rk(X ; 1, χ−4) lie on the unit circle. Before giving further evidence in support of
Conjecture 7.3 as well as an application, we indicate the conjectural situation in the
cases χ = 1 or ψ = 1, which is not included above. In vague summary, it appears
that still most of the roots lie on the unit circle.

Example 7.4. Let χ be a nonprincipal real Dirichlet character. Computations
show that, at least for k 6 50 and χ of modulus at most 100, the polynomials
Rk(X ;χ, 1) are unimodular, except when χ takes the same values as χ3, the unique
character of conductor 3. In the case χ = 1, it was shown in [MSW11] that
R2k(X ; 1, 1), for k > 2, has exactly four distinct real roots (approaching ±2±1)
and that the remaining roots lie on the unit circle. On the other hand, it appears
that R2k+1(X ;χ3, 1), for k > 3, has exactly three distinct real roots (−1 as well
as two roots approaching −2±1) and that the remaining roots again lie on the unit
circle.

In the next example, we restrict to primitive characters for expositional reasons
and make use of the fact [ZR76] that, for a given conductor M , there is at most
one primitive real Dirichlet character modulo M of each parity. We label even such
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characters as M+ and odd ones as M−. For instance, the label 8+ refers to the
even real Dirichlet character of conductor 8.

Example 7.5. The situation in the case of Rk(X ; 1, ψ), with ψ a real primitive
character, is slightly more varied. For certain characters ψ, such as

3−, 4−, 5+, 8±, 11−, 12+, 13+, 19−, 21+, 24+, . . . ,
the polynomial Rk(X ; 1, ψ) appears to again be unimodular. For certain other
characters ψ, such as

1+, 7−, 15−, 17+, 20−, 23−, 24−, . . . ,
we observe, at least for small k, that all nonreal roots lie on the unit circle. On
the other hand, there remains a third group of exceptional characters ψ, namely
35−, 59−, 83−, 131−, 155−, 179−, . . . (we observe that in each listed case ψ is odd),
for which Rk(X ; 1, ψ) can have nonreal zeros off the unit circle. Consider, for
instance, the unique real primitive Dirichlet character χ35 of conductor 35. Then
the polynomial R7(X ; 1, χ35) has the seven roots (given to three decimal digits)

1, 0.461± 0.888i, (−0.657± 0.922i)±1.

While the first three listed roots have absolute value 1, the last four have absolute
value 1.132±1. In each of the exceptional cases, we observed, as in the example of
R7(X ; 1, χ35), at most four nonreal zeros off the unit circle (in light of Proposition
7.6, such zeros necessarily come in groups of four).

In order for all zeros of a polynomial p(X) = a0+a1X+· · ·+anXn, an 6= 0, to lie
on the unit circle, it is a necessary condition [Coh22], [LS13], that the polynomial
is self-inversive, that is, for some ε with |ε| = 1, ak = εan−k for k = 0, 1, . . . , n. In
support of Conjecture 7.3, we now observe that, for real characters, Rk(X ;χ, ψ) is
self-inverse with ε = ±1. In other words, Rk(X ;χ, ψ) is reciprocal or anti-reciprocal
depending on the parity of ψ.

Proposition 7.6. Let χ and ψ be real Dirichlet characters. If χ(−1)ψ(−1) =
(−1)k, then

Rk(X ;χ, ψ) = ψ(−1)Xk−2Rk(X
−1;χ, ψ).

Proof. Temporarily, denote with

ps(X) = (X − 1)k−s−1(1−Xs−1)

one of the terms in (43) contributing to Rk(X ;χ, ψ). It is simple to check that

Xk−2ps(X
−1) = (−1)k−sps(X).

On the other hand, recall that, for any Dirichlet character χ, Bs,χ = 0 if χ(−1) 6=
(−1)s, unless χ = 1 and s = 1. It follows that Bk−s,ψ = 0 if ψ(−1) 6= (−1)k−s,
unless ψ = 1 and s = k− 1. In the latter case, when ψ = 1 and s = k − 1, we have
Bs,χ = Bk−1,χ = 0 because χ(−1) = (−1)k, unless χ = 1 and k = 2, which may be
checked separately. We have thus shown that Xk−2ps(X

−1) = ψ(−1)ps(X) for all
s that have a nonzero coefficient in (43). �

Example 7.7. The case ψ = 1 is of special interest, because it yields explicit
formulas for Dirichlet L-values at integral arguments (of parity opposite to the
Dirichlet character) in terms of Eichler integrals. Let χ be a primitive Dirichlet
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character and k > 3 such that χ(−1) = (−1)k. Applying Theorem 6.1 as in
Corollary 6.5 yields

k − 1

2πi
Ẽk(X ;χ, 1)|2−k(1−RL) = G (χ) (−2πi/L)k−1Rk(LX + 1; χ̄, 1)

+L(k − 1, χ)
(

1− (LX + 1)
k−2
)

.

Solving for L(k−1, χ), we obtain formulas for these L-values in the spirit of [Kat74];
see Example 6.4. On the other hand, suppose that α, with Im(α) > 0, is a root of
Rk(α; χ̄, 1) = 0, which is not a (k − 2)th root of unity. Then

(46) L(k−1, χ) =
k − 1

2πi(1− αk−2)

[

Ẽk

(

α− 1

L
;χ, 1

)

− αk−2Ẽk

(

1− 1/α

L
;χ, 1

)]

,

thus explicitly linking the L-value to values of the Eichler integral at algebraic
points, as is studied for χ = 1 in [GMR11]. Note that by (32), as in Example 6.4,

Ẽk(τ ;χ, 1) =
4πi

k − 1

∞
∑

n=1

χ(n)

nk−1

e2πinτ

e2πinτ − 1
.

Hence (46) takes the entirely explicit form

L(k − 1, χ) =
2

1− αk−2

∞
∑

n=1

χ(n)

nk−1

[

1

1− e2πin(1−α)/L
− αk−2

1− e2πin(1/α−1)/L

]

,

which expresses the L-value as a combination of two Lambert-type series. The
special case χ = 1, which is a consequence of Ramanujan’s identity (35), has recently
been studied in [GMR11]. Specifically, using the notation

Fk(z) :=
ki

4π
Ẽk+1(z; 1, 1) =

∞
∑

n=1

1

nk
e2πinτ

1− e2πinτ
,

it is shown in [GMR11, Theorem 1.1] that the numbers

F2k+1(β)− β2kF2k+1(−1/β) =
(2k + 1)i

4π

[

Ẽ2k+2(β; 1, 1)− β2kẼ2k+2(−1/β; 1, 1)
]

are transcendental for every algebraic β ∈ H with at most 2k+2+δ exceptions. Here
δ = 0, 1, 2, 3 according to whether gcd(k, 6) = 1, 2, 3 or 6, respectively. Examples
of such exceptional values are β = i, if k is even, and β = eπi/3, e2πi/3, if k is
divisible by 3. In each of these three cases, however, the combination F2k+1(β) −
β2kF2k+1(−1/β) vanishes. As pointed out in [GMR11], the existence of further
exceptional β is very unlikely and would imply that ζ(2k+1) is an algebraic linear
combination of 1 and π2k+1. This conclusion relies on the results of [MSW11], by
which the only roots of unity that are zeros of the corresponding period polynomial
are ±i, if k is even, and ±eπi/3,±e2πi/3, if k is divisible by 3. The above results
indicate that similar transcendence results should hold for the more general Eichler
integrals Ẽk(τ ;χ, 1) in place of Ẽk(τ ; 1, 1), in which case the arithmetic nature of
Dirichlet L-values of “wrong” parity is concerned.

Remark 7.8. It appears that the observations in this section can be extended
further. For instance, in the case of imaginary Dirichlet characters, one finds that
most of the zeros lie on the unit circle, if one considers instead of Rk(X ;χ, ψ) its
real or imaginary part (that is, the polynomial with coefficients which are the real
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or imaginary parts of the coefficients of Rk(X ;χ, ψ)). Finally, generalizing (43),
one may consider the polynomial

k
∑

s=0

Bs,χ
s!

Bk−s,ψ
(k − s)!

(

X − 1

m

)k−s−1

(1−Xs−1),

where m = aM for some integer a. In the spirit of Example 7.2, this polynomial
corresponds to the period polynomial in Corollary 6.5 when n = aL. It again
appears that most roots of these polynomials lie on the unit circle.

As a second, and possibly more direct, generalization of the Ramanujan polyno-
mials (44), we briefly also consider

(47) Sk(X ;χ, ψ) =
k
∑

s=0

Bs,χ
s!

Bk−s,ψ
(k − s)!

(

LX

M

)k−s−1

,

where χ and ψ are Dirichlet characters modulo L and M . The two generalizations
(43) and (47) are related by

Sk(X ;χ, ψ)|2−k(1 −RL) = Rk(LX + 1;χ, ψ).

By (31) and Corollary 6.2, we have that, for k > 3 and primitive nonprincipal
Dirichlet characters χ and ψ such that χ(−1)ψ(−1) = (−1)k,

Ẽk(X ;χ, ψ)−ψ(−1)Xk−2Ẽk(−1/X ;ψ, χ) = −χ(−1)G (χ)G(ψ)
(2πi/L)k

k − 1
Sk(X ; χ̄, ψ̄),

which expresses the Sk(X ;χ, ψ) as period polynomials as well. In general, these
polynomials are not self-inverse and therefore cannot be unimodular.

Conjecture 7.9. For nonprincipal real Dirichlet characters χ, all nonzero roots of
the polynomial Sk(X ;χ, χ) lie on the unit circle.

We have verified this conjecture numerically for k 6 50 and characters χ of
modulus at most 100. In the case χ = 1, we recall that it was shown in [MSW11]
that the polynomials S2k(X ; 1, 1) = R2k(X) have all their nonreal zeroes on the
unit circle. On the other hand, for χ = 1, the polynomial S2k(X ; 1, 1) is only the
odd part of the period polynomial and it was recently proved in [LS13] that the full
period polynomial (35) is indeed unimodular.

8. Relation to sums considered by Ramanujan

8.1. Sums of level 1. Ramanujan famously recorded (see [Ber77] or [Ber89, p.
276], as well as the references therein) the formula

α−m

{

ζ(2m+ 1)

2
+

∞
∑

n=1

n−2m−1

e2αn − 1

}

= (−β)−m
{

ζ(2m+ 1)

2
+

∞
∑

n=1

n−2m−1

e2βn − 1

}

−22m
m+1
∑

n=0

(−1)n
B2n

(2n)!

B2m−2n+2

(2m− 2n+ 2)!
αm−n+1βn,(48)

where α and β are positive numbers with αβ = π2 and m is any nonzero integer.
Rewriting equation (48) using

1

ex − 1
=

1

2
cot
(x

2

)

− 1

2
,
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slightly shifting the value of m and setting β = πiτ , and therefore α = −πi/τ , we
obtain, as in [Ber76], for integers m 6= 1,

τ2m−2ξ2m−1(− 1
τ )− ξ2m−1(τ) = (−1)m(2π)2m−1

m
∑

n=0

B2n

(2n)!

B2m−2n

(2m− 2n)!
τ2n−1,

where ξs is the cotangent Dirichlet series defined in (2).
As in the case of the secant Dirichlet series, discussed in Sections 4 and 6, the

cotangent Dirichlet series is essentially an Eichler integral. Indeed, one easily checks
that, for integral s,

i

2
ξs(τ) =

1

2
ζ(s) +

∞
∑

n=1

σs(n)

ns
qn.

When s = 2k− 1 is odd, the right-hand side visibly is, up to scaling and a constant
term, an Eichler integral of the weight 2k Eisenstein series

E2k(τ ; 1, 1) = 2ζ(2k) +
2(2πi)2k

Γ(2k)

∞
∑

n=1

σ2k−1(n)q
n,

which is modular with respect to the full modular group.

Remark 8.1. Proceeding as in Section 3, though matters simplify because the
level is 1, we conclude that ξ2m+1(

√
r) is a rational multiple of π2m+1√r whenever

r is a positive rational number (assuming, for convergence, that
√
r is irrational).

Explicit special cases of this observation may be found, for instance, in [Ber76].

8.2. Sums of level 4. Ramanujan also found [Ber89, Entry 21(iii), p. 277] the
identity

α−m+1/2

{

1
2L(χ−4, 2m) +

∞
∑

n=1

χ−4(n)

n2m(eαn − 1)

}

=
(−1)mβ−m+1/2

22m+1

∞
∑

n=1

sech(βn)

n2m

+
1

4

m
∑

n=0

(−1)n

22n
E2n

(2n)!

B2m−2n

(2m− 2n)!
αm−nβn+1/2,(49)

which was first proved in print by Chowla [Cho28], where α and β are positive
numbers with αβ = π2 and m is any integer. The goal of this section is to relate
(49) to the present discussion of the modular properties of the secant Dirichlet
series. It will transpire that (49) is an explicit version of Theorem 6.1 in the case
χ = 1 and ψ = χ−4. In other words, equation (49) encodes how ψ2m transforms
under S, as defined in (28). From here, we can then work out the exact way
in which ψ2m transforms under any transformation of SL2(Z), though we do not
develop the details here (but see Remark 8.2 for indications). On the other hand,
we demonstrate that we may use (49) as the basis for yet another derivation of the
functional equation (6).

With α = πiτ , and proceeding as in the case of (48), we can write (49) as

(50) τ2m−1ψ2m(− 1
τ ) = ψ̂2m(τ)− h2m(τ),

where

ψ̂2m(τ) =

∞
∑

n=1

χ−4(n)
cot(πn2 τ)

(n/2)2m
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and h2m(τ) is the rational function defined in (40). Since ψ̂2m(τ +2) = ψ̂2m(τ), we
find that

ψ2m|1−2mST
−2 = ψ̂2m − h2m|1−2mT

−2.

Using further that B = ST−2S−1, with B as in (8), we find that

ψ2m|1−2mB = ψ2m − h2m|1−2m(S−1 + T−2S−1)

= ψ2m + h2m|1−2m(S + T−2S).(51)

which, in expanded form, is precisely the functional equation (38).

Remark 8.2. The functional equation satisfied by ψ2m is given in [LRR14] in
somewhat different form. Indeed, comparing the rational functions involved in the
functional equations, we observe that

(πi)2m
m
∑

n=0

22n−1B2nE2m−2n

(2n)!(2m− 2n)!
τ2m−2n

[

1− (2τ + 1)2n−1
]

= (πi)2m
m
∑

n=0

22n−1B2n(
1
2 )E2m−2n

(2n)!(2m− 2n)!
(τ + 1)2m−2n

[

1− (2τ + 1)
2n−1

]

,(52)

where the first sum is the right-hand side of (38) and the second sum is, up to
notation, the one derived in [LRR14]. To see that these two rational functions
indeed coincide, one may proceed as in Remark 6.7. On the other hand, in order to
further illustrate how ψ2m transforms under the full modular group, we now sketch
a proof of their equivalence, which, ultimately, derives from B = ST−2S−1 =
(TST )2.

We can easily check that ψ2m|1−2mT is given by

ψ2m(τ + 1) =

∞
∑

n=1

(−1)n
sec(πnτ)

n2m
=

1

22m−1
ψ2m(2τ) − ψ2m(τ).

It follows that

ψ2m|1−2mTS = ψ̂2m(τ/2)− ψ̂2m(τ) − h2m(τ/2) + h2m(τ).

Since cot (z/2)− cot (z) = csc(z), this equals

ψ2m|1−2mTS =

∞
∑

n=1

χ−4(n)
csc(πn2 τ)

(n/2)2m
− h2m(τ/2) + h2m(τ),

which then implies that

ψ2m|1−2mTST
2 = −

∞
∑

n=1

χ−4(n)
csc(πn2 τ)

(n/2)2m
− h2m(τ/2 + 1) + h2m(τ + 2)

= −ψ2m|1−2mTS + [h2m(τ)− h2m(τ/2)]|1−2m(1 + T 2).

Since B = (TST )2 = (TST 2)ST , we thus arrive at

(53) ψ2m|1−2mB = ψ2m + [h2m(τ) − h2m(τ/2)]|1−2m(ST + T 2ST ).

Comparing (53) with (51), we have shown that

h2m(τ)|1−2m(S + T−2S) = [h2m(τ) − h2m(τ/2)]|1−2m(ST + T 2ST ),

which, upon expanding and using the relation Bn(
1
2 ) = −(1 − 21−n)Bn, results in

the desired equality (52).
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Having thus come full circle, we close with remarking that a number of further
infinite sums, similar in shape to (1) and (2), with trigonometric summands and
modular properties are discussed in [Ber89, Chapter 14] and the references therein.

9. Conclusion

We have reviewed the well-known fact that, among similar sums, the cotangent
and secant Dirichlet series of appropriate parity are Eichler integrals of Eisen-
stein series of level 1 and 4, respectively. Their functional equations, recorded by
Ramanujan in his notebooks, are thus instances of the modular transformation
properties of Eichler integrals in general, with their precise form determined by
the corresponding period polynomials. This has lead us to explicitly compute pe-
riod polynomials of Eisenstein series of higher level. Motivated by recent results
[GMR11], [MSW11], [LR13], [LS13] on the zeros of Ramanujan polynomials, which
arise in the level 1 case, we observe that the generalized Ramanujan polynomials
appear to also be (nearly) unimodular. On the other hand, it was recently shown
in [CFI12] and [EGR13] that the nontrivial zeros of period polynomials of modular
forms, which are Hecke eigenforms of level 1, all lie on the unit circle. Our obser-
vations for Eisenstein series of higher level suggest that it could be interesting to
extend the results in [CFI12], [EGR13] to the case of higher level.
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